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Abstract

Flow and temperature oscillations occur under normal conditions in a thermal system with thermostatic control. We present exper-
imental results of the synchronization of multiple oscillators in the secondaries of a thermal-hydraulic network. The test facility is com-
posed of three secondary loops with heat exchangers that exchange heat with a primary heating loop on one side and a primary cooling
loop on the other. A thermostatic controller senses the temperature at the outlet of a heat exchanger and modulates the flow rate in that
loop. The flow valve is partially closed if the temperature goes above an upper limit and is completely opened if it falls below a lower
limit. As a consequence a self-sustained flow and temperature oscillation is set up in that secondary. The frequency of the oscillation
depends on the dead-band between the upper and lower temperature limits. Coupled oscillators are set up by the simultaneous action
of multiple controllers on different branches. Frequency locking, phase synchronization as well as phase slips are observed to occur
due to thermal-hydraulic coupling between the controllers. The phenomenon is a function of the detuning between them which is altered
by changing the dead-band of the controllers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Self-sustained oscillators are those that do not need
external forcing to develop oscillations. Over the past dec-
ades, synchronization in a population of weakly coupled
oscillators has attracted wide-spread interest among scien-
tists in different fields. In 1958, when studying the alpha
rhythm of brain waves, Wiener [1] suggested that ‘‘in the
brain we have some sort of oscillators, and that these oscil-
lators in some sense constitute a more accurate oscillator en

masse than they do singly’’. Winfree [2], working within the
framework of a mean-field model, pointed out that when a
certain threshold is crossed, coupled oscillators may begin
to synchronize spontaneously. An early theoretical expla-
nation came from Kuramoto [3], who analyzed a mean-
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field model of a population of phase oscillators. This model
is simple enough to be mathematically tractable and has
since been further explored [4,5]. Synchronization is now
understood to be a ubiquitous phenomenon [6–8], and
has been observed and studied in many different kinds of
natural and artificial systems. There are examples in bio-
logical [9–14], chemical [15–17], mechanical [18–21], fluid
[22] and electrical [23–25] systems, among others. Some
of the systems exhibit chaos [26–35] or are of fractional
order [36].

Although synchronization of coupled self-sustained
oscillators has attracted considerable attention in many
other complex systems, there are no similar studies in the
literature on thermal-hydraulic networks. In these systems,
oscillation of flow or temperature may occur due to insta-
bilities, periodic external disturbances, or changes in oper-
ating condition, among other factors. In addition, feedback
control systems, with which we are concerned, are an
important class of systems that may oscillate. Here we
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Nomenclature

A amplitude
A,B,C secondary loops
P1,P2 pumps
s analytic signal
t time (s)
T temperature (�C)
Tu thermostat upper temperature limit (�C)
Tl thermostat lower temperature limit (�C)
Ts thermostat set point (�C)
DT thermostat temperature dead-band (�C)
V j

i valve in loop i with j indicating heating (h) or
cooling (c)

Greek symbols

h phase angle (rad)
/ phase difference (rad)

x frequency of oscillation without coupling (rad/s)
Dx difference between x’s of two oscillators (rad/s)
X frequency of oscillation with coupling (rad/s)
DX difference between X’s of two oscillators (rad/s)

Superscripts

c cooling side
h heating side

Other symbolsc Hilbert transform
hi temporal mean

PID

Fig. 1. Layout of network.
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use the specific example of thermostatic control of temper-
ature which, even in normal operation, has a self-sustained
oscillatory behavior. Interaction between oscillations in
diverse parts of a network due to independently acting
thermostats is of concern in the design of large-scale ther-
mal control systems as, for example, in heating and cooling
systems in a large office building; the temperature in indi-
vidual offices may be thermostatically controlled, but it is
not correct to assume that the resulting dynamics of each
of the rooms are independent of each other.

In general, thermal-hydraulic networks consist of heat
exchangers, piping and pumps, and are widely used in
building HVAC systems, in power plants and in the pro-
cessing industry. Though the performance of the individual
components of a network is fairly well understood, the
interaction between them when put together has received
less attention. Coupling of sub-systems through fluid flow
and heat transfer influences the operation of the system
as a whole. There are many simulations of the dynamics
of thermal-hydraulic systems, such as in nuclear power
plants [37]. Thermostats are very common in industrial
and building thermal control applications [38,39], and
some authors have specifically looked at the modeling of
system behavior due to thermostats. This has included
whole building energy simulations [40], hot-water heaters
[41], household refrigerators [42], engine cooling [43,44],
variable-air-volume air conditioning [45], radiant floor
heating [46], automotive thermostats [47], thermostatically
controlled appliances [48] and the energy performance of
coupled-control units [49].

In the present work, we look at oscillations due to multi-
ple thermostatic controllers located on different loops of a
thermal-hydraulic network. There is dynamic coupling
between the loops, and this leads to the observation of syn-
chronization under certain conditions. The work was car-
ried out in an experimental facility that has previously
been used for studies of control strategies and network
dynamics [50–52], as well as steady-state interactions of
the pressure, flow rate and temperature between secondary
loops [53].

2. Experimental procedure

2.1. Facility

A simplified diagram of the experimental facility is shown
in Fig. 1, details of which are given elsewhere [50–53]. There
are two primaries: one is a hot-water loop (the water is
heated by heaters HT1 and HT2 with the temperature main-
tained at 37.8 �C) driven by pump P1, and the other is cold-
water (cooled by heat exchanger HXm connected to the
building chilled-water line) driven by P2. Between them
there are three secondaries, A, B and C, on which there are
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heat exchangers HXA, HXB and HXC, exchanging heat
with the two primaries. There are computer-controlled,
pneumatically-actuated, two-way valves on the heating
ðV h

A; V
h
B and V h

CÞ and cooling ðV c
A; V

c
B and V c

CÞ sides of each
heat exchanger to control the flow rate. Control valves on
the heating side are located upstream of the heat exchangers,
and due to the space limitations those on the cooling side are
downstream. The location of valves, pumps and other com-
ponents were not optimized. Water temperatures are mea-
sured by type J ungrounded thermocouples at both the
heating ðT h

A; T
h
B and T h

CÞ and cooling ðT c
A; T

c
B and T c

CÞ side
outlets of each heat exchanger. The time constant of the
thermocouple probe, which is around 0.55 s, is much smaller
than the time scales in the experiment. Data acquisition,
processing and control are carried out by a PC running
LabVIEW.

2.2. Signal analysis

Compared to analytical or numerical data, it is harder in
experiments to analyze almost-periodic events and to deter-
mine instantaneous phase and frequency from data. Here
we use some of the techniques of time–frequency analysis
of non-stationary signals [54], as is commonly done in
phase-synchronization studies [15,27], to determine instan-
taneous values of amplitudes, phases and frequencies for
the temperature signals. The computations were done in
MATLAB.

We take the deviation of the temperature from the
mean as T 0(t) = T(t) � hTi, where h i is a temporal mean
defined by

hT i ¼ lim
s!1

1

s

Z s

0

T ðtÞdt: ð1Þ

Applying the Hilbert transform

bT 0ðtÞ ¼ 1

p
PV

Z 1

�1

T 0ðtÞ
t � s

ds; ð2Þ

where PV is the Cauchy principal value, we can obtain the
so-called complex analytic signal sðtÞ ¼ T 0ðtÞ þ ibT 0ðtÞ, where
i ¼

ffiffiffiffiffiffiffi
�1
p

. This can be written in terms of an instantaneous
amplitude A(t) and phase h(t) as s(t) = A(t)eih(t), where

AðtÞ ¼ ðT 02 þ bT 02Þ1=2 and hðtÞ ¼ tan�1ðbT 0=T 0Þ. Numerical
differentiation [55,56] of the instantaneous phase is applied
to determine the instantaneous frequency so that x = dh/dt.

2.3. Thermostatic self-sustained oscillations

The three controllers reside in the PC in the form of soft-
ware. For each controller the sensor is a thermocouple at
one of the outlets of a heat exchanger and the actuator is
a two-way valve at the same location. Actuation of the
valve is dependent on the temperature signal. The temper-
ature control method used here is thermostatic (also called
on–off, two position or bang–bang). If the water temperature
T rises above an upper limit Tu, the controller shuts the
valve partially (it is not shut completely so as to allow a
small flow whose temperature can be measured). If, on
the other hand, the temperature falls below the lower limit
Tl, the valve is completely opened. DT = Tu � Tl is defined
as the dead-band, and the set point of the controller can be
considered to be the mean Ts = (Tu + Tl)/2. The tempera-
ture and flow rate oscillate in time as a result of thermo-
static control.

To produce a single uncoupled oscillator, a thermostatic
controller is used on, for example, the temperature T c

B on
the cooling side of the heat exchanger HXB as sensor and
the valve V c

B as actuator. Temperature measurements are
recorded long enough until they become more or less peri-
odic, which it does after a few seconds. To reduce the ran-
dom noise in the temperature signal, 500 data points per
second were taken and the averaged result was used. A typ-
ical oscillation of the temperature T c

B is shown in Fig. 2.
The period is around 20 s in this example. The form of each
period is not exactly sinusoidal: it takes longer for the tem-
perature to rise than to fall. Nor are the periods all exactly
identical. The Tu and Tl limits used by the controller are
also indicated in the figure, and it can be seen that the tem-
perature over- and under-shoots the limits. The exact form
of the temperature–time relation depends on the network
configuration and parameters. Temperatures at other loca-
tions within the network also oscillate at the same fre-
quency due to interaction with this controller and driven
by it.

The mean frequency of oscillation hxi is defined in a
manner similar to Eq. (1), and is obtained from the instan-
taneous frequency x(t) by numerical integration. Since the
measured temperature is not exactly periodic, the interval s
is taken sufficiently large so that the integral becomes inde-
pendent of it. As shown in Fig. 3, s � 500 s appears to be
sufficient. The mean frequency is a function of the dead-
band with a complicated dependence on the network char-
acteristics. In general, however, as the dead-band DT for
thermostatic action is increased, it takes longer for the
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temperature to go from one to the other and back again,
and the period of the oscillation consequently increases.
This is shown in Fig. 4 which is a result of measuring hxi
for different DT. This indicates that the frequency of the
thermostatic oscillator can be changed by altering the
dead-band, a fact that we will use to detune multiple
controllers.

2.4. Multiple controllers

The experimental facility has three secondary loops that
are nominally identical. Thermostatic control can be
applied to a temperature and actuator pair in more than
one loop. Since there are three heat exchangers, there are
six outlets where the temperature can be sensed and the
valve actuated. These locations are marked in Fig. 1 as
ðT h

A; V
h
AÞ; ðT h

B; V
h
BÞ; ðT h

C; V
h
CÞ for the heating sides, and

ðT c
A; V

c
AÞ; ðT c

B; V
c
BÞ and ðT c

C; V
c
CÞ for the cooling sides. Each

location, if used as a controller, provides a potential
oscillator.

When more than one oscillator is in operation, the fre-
quency of each may be different than if it were operating
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alone. We will use the symbol x as before to denote the
uncoupled frequency of an oscillator when it is the only
one in operation, and use X for its coupled frequency when
another oscillator is also simultaneously functioning. In
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general, the two will be different because of interaction
between the oscillators.

Generally speaking, there are two possible parameters
to change during the study of the collective dynamics of
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coupled oscillators. The first is the physical coupling
between the oscillators, and the second is the detuning
(i.e. the difference in the uncoupled frequency x of each).
Since there is no way to change the coupling between
the loops in the present case, we will use detuning as a
parameter. This we will do by modifying the dead-band
of the oscillators which will change their uncoupled fre-
quency of oscillation. It can be done independently for
each controller through the software. If x1 and x2 are
the uncoupled frequencies of two oscillators, then Dx =
x1 � x2 represents the detuning between them. Of course,
DX = X1 � X2 is a different quantity that depends on the
coupling between the oscillators. For completely decou-
pled oscillators, x1 = X1 and x2 = X2, and on the other
hand, complete frequency locking between the two oscilla-
tors means that DX = 0 regardless of the value of
Dx. Another manifestation of synchronization is phase

locking [6,11] where the phase difference / = h1 � h2 is a
constant.
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3. Results and discussion

Steady-state interaction between the loops was previ-
ously measured [53] where it was shown that a change in
flow rate in one secondary affected the pressure differences,
flow rates and temperatures in the others also. The dynam-
ics of coupling between the loops are complex, but some
physical reasons can be put forth. If a valve in one second-
ary is closed slightly, some of the flow in the primary is
momentarily diverted to the other secondaries which then
affects the temperatures. There are different times scales
associated with interactions between each one of the vari-
ables. In the present case, there are two opposing effects
in operation. A decrease of the temperature in one loop
is due to an increase in the flow rate in that loop; the flow
rates in other loops will decrease causing the outlet temper-
ature to increase. In this sense, the interaction is repulsive.
However, a decrease of the temperature in one loop also
reduces the water temperature in the primary and therefore
the inlet temperature to the other loops. In this sense, the
interaction between the oscillators is attractive. In addition,
the other controllers are also actively trying to contain the
temperature between the limits. It is not difficult to see why
detuning can have an important effect on the response of
the network. There is also coupling between the heating
and cooling sides of a heat exchanger. This, however, is
not hydrodynamic but thermal; temperatures on one side
affect those on the other. Thus the coupling across the
two sides can be expected to be weaker than that on the
same side.

There are many combinations of multiple controllers
that can be applied to the six water-outlet locations of
the three heat exchangers, but we will not experiment with
all. We will first select two controllers and then three. For
each set of experiments, only the valves selected for control
are varied in time, while all the others are fixed. Detuning is
introduced by a series of dead-band changes in one control-
ler and keeping the other controllers fixed.

3.1. Two controllers

Study of the dynamics of controllers located on the heat-
ing and cooling sides of the same heat exchanger is not very
interesting since the coupling between them will be strong
and does not address the issue of coupling between oscilla-
tors in different loops. Thus the controllers will be chosen
to be on different heat exchangers, but with both on the
cooling side or one each on either side.

3.1.1. Controllers at T c
B and T c

C

We first choose the locations T c
B and T c

C for two con-
trollers on the cooling side. The controller for T c

C is fixed
at Ts = 14 �C, DT = 4 �C, while that for T c

B has Ts =
14.5 �C with a variable dead-band. Figs. 5(a) and (b) show
the hXi and hDXi responses of the network, respectively,
for a number of different values of the dead-band DT.
For small and large DT the two coupled frequencies
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change, while in the middle they are locked together in
synchrony. (a) shows that in the unsynchronized regions,
the hXi vs. DT line is steeper for T c

B, which is where
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the same phenomenon slightly differently. For the dead-
band in the range 3.0 �C < DT < 5.0 �C there is a plateau
where hDXi is almost zero indicating synchroniza-
tion. Outside this region the two oscillators are out of
synchrony.

The phase difference /(t) is shown for six different values
of the dead-band in Fig. 6 (letters A–F refer to correspond-
ing points on Fig. 5(b)). In curves A and F at the two
extremes, j/j grows indefinitely: the oscillators are out of
synchrony. In curve E the growth is not uniform. There
are times when j/j is nearly constant while at times it
changes rapidly by 2p (a phenomenon that is often known
as phase slip [6]). It is an indication of transition to
synchronization. In curves B, C and D, however, j/j is a
constant throughout implying that the two oscillators are
phase-synchronized.

3.1.2. Controllers at T h
A and T c

C

We now choose one controller on the heating and one
on the cooling sides, for example, T h

A and T c
C. Again, fre-

quency detuning is achieved by changing the dead-band
of T h

A with Ts = 21.5 �C while that of T c
C, with Ts = 14 �C

and DT = 4 �C, is kept constant. hDXi vs. DT is plotted
in Fig. 7, where a plateau exists between the dashed vertical
lines indicating synchronization there. The dead-band
interval in which this happens is about 0.5 �C wide, being
much smaller than the 2 �C in Section 3.1.1 where the
two controllers were on the same side.

3.2. Three controllers

The collective behavior of three active controllers is
more complex. In one experiment we will choose all three
on the cooling side, and in the other choose two on the
cooling and one on the heating side.

3.2.1. Controllers at T c
A; T

c
B and T c

C

The three controllers are on the cooling side. The con-
troller T c

A is set at Ts = 14.5 �C, DT = 2.0 �C and T c
B at

Ts = 14.5 �C, DT = 2.5 �C. Controller T c
C is set at Ts =

14.5 �C with variable dead-band 0.4 �C < DT < 4 �C.
The effect of the dead-band on the three phase differ-

ences is shown in Fig. 8. For each dead-band, the network
response is obtained for 15 min. The phase differences are
shown as a series of plots; each corresponds to a fixed
DT but the initial phase differences are subtracted out so
that they all start from zero. In (a), the dead-bands of
the two controllers T c

A and T c
B are close enough for syn-

chrony, while T c
C is not. With an increase in DT, they all

slowly become asynchronous as shown in (c). On further
increase all three oscillators synchronize, as in (f). After
that, they are out of synchrony, as in (g). Finally, the
dead-band becomes too large and the oscillation of T c

C is
out of synchrony with the others.

The three loop temperatures, T c
AðtÞ; T c

BðtÞ and T c
CðtÞ, can

be plotted in a phase space as shown in Fig. 9(a) and (b)
(where they correspond to the signals in Fig. 8(d) and (f),
respectively). Clearly, there is no synchronization in (a).
In (b), synchronization introduces a ‘‘hole’’ in the plot
and all three variables oscillate at similar frequencies; the
phases of the three temperatures remain locked, while the
amplitudes of the individual temperatures evolve indepen-
dently. The flow in phase space is not exactly repeatable;
this could be due to noise in the measured signals, non-
linearity in the system, or variations in the building
chilled-water temperature.

3.2.2. Controllers at T h
A; T

c
B and T c

C

This a case where there is coupling between the heating
and cooling sides. The controller for T c

B is fixed at
Ts = 16.5 �C, DT = 2.5 �C, while that for T c

C is fixed at
Ts = 16.5 �C, DT = 4.5 �C. The controller for T h

A, on the
other hand, has Ts = 18.5 �C and variable dead-band
0.4 �C < DT < 4 �C.

The results of the phase differences are shown in
Fig. 10. In the beginning the frequency detuning of the
three oscillators is so large that they fail to synchronize,
as shown in (b). As the dead-band grows the detuning
becomes smaller and there is synchronization; /AB is
nearly constant while the other two increase indefinitely
as shown in (d). On further increasing the dead-band,
/AB decreases indefinitely, though slowly, as in (e), but
/AC becomes smaller. Now the two oscillators
T h

A and T c
C begin to synchronize. After (f), the three oscil-

lators are out of synchrony again.

4. Conclusions

Large-scale, complex thermal-hydraulic networks are
sometimes broken up into sub-systems which are then
designed independently and without regard to dynamic
interaction between them. It is possible, however, that their
dynamics may become coupled during operation. This may
happen not only for identical sub-systems but also for
those with slight dissimilarities. Here we have experimen-
tally demonstrated the phenomenon of synchronization
for a small-scale network. Self-sustained oscillations are
generated by using thermostatic temperature control.
Detuning between controllers has been varied by changing
their dead-bands. With this the network has been observed
in various states of synchronization. The phenomena of
frequency- and phase-locking as well as phase slip were
observed.

Though much more work needs to be done to generalize
the results, this study may be helpful in the design of con-
trol systems for thermal-hydraulic networks. In building
systems, for instance, it would be of concern if tempera-
tures fluctuations in different areas were to enter into
synchrony.
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